
INTRODUCTION

The behaviour of an elastic system in stability problems 

strongly depends on the type of force that loads the structure. 

Statically the compressive critical load wherewith a beam 

becomes instabile is given by the Euler formula

When a structure is subjected to a follower forces, the statical 

approach does not show all the possible instabilities that the 

system can exhibit: in these cases the way to determinate the 

critical loads is via a dynamical approach.

Classical examples are represented by the Ziegler's column 

(Fig. 1), in the setting of discrete systems and the Beck's 

column, in the setting of continuous systems (Fig. 2). Both the 

structures are subjected to a compressive load that follows the 

deformed shape during the growth of the motion. Even systems loaded with a tensile load, for 

instance two rigid bars connected through a slider and externally constrained by a hinge (Fig. 3),  

show dynamical instabilities.

Figure 1: The Ziegler’s column, a       

two-degree-of-freedom system subjected 

to a compressive follower load.
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Figure 2: The Beck’s column, a continuous 

system subjected to a compressive 

follower load.

Figure 3: A two-degree-of-freedom 

discrete system subjected to a tensile 

follower load.
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Figure 4: Parameter q  with a compressive load     1

P=3.4 N and v =0.3 m/s. The system is stable.n
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ZIEGLER’S COLUMN

The system[1] described in Figure 1 is composed by two rigid rods (with mass per unit length r  and  1

r ) where the rotational springs of stiffness k  and k  provide the elasticity. The defomed shape of the 2 1 2

structure is fully determined by the two Lagrangian parameters q  and q . The follower load is induced 1 2

to the column with a wheel sliding with Coulomb friction in the plane that moves with velocity v .n

The two nonlinear differential equations of motion for the system, assuming that the hinges are 

viscoelastic of the Voigt type with constants b , b , k  and k , is found with the virtual work principle1 2 1 2

 

The numerical solution for the problem encounters difficulties solving the multivalue and discontinuous relation of the friction law, 

therefore in this work we will use the simplification employed by Oden and Martins

where   is a small parameter. 

If we consider the absence of viscosity (b =b =0) the solutions of the linearized system can be written in the matrix form1 2

where A  are the (complex) amplitudes, W is the circular frequency and the other parameters arej

Non-trivial solution to the system is possible if the determinant of the matrix becomes zero. In that case three possibilities arise:
2Ÿ two real positive values for w , a situation that corresponds to stability of the system (g<g ). It is shown in Figure 3;f

2Ÿ two complex conjugate values for w , a situation where the oscillation of the system becomes steady at large deformation (g<g<g ). f d

This instability is called flutter. It is shown in Figure 4;
2Ÿ two real and negative values for w , a situation corresponding to vibrations that grow exponentially with time (g>g ). This instability d

is called divergence.

The critical load for flutter and divergence instability is written in the adimensional form
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Figure 5: Parameter q  with a compressive load P=6.8 N 1

and v =0.3 m/s. The system shows flutter instability.n

{

BECK’S COLUMN

The stability of a continuous beam subjected to a compressive follower force (with mass per unit length r and constant flexural rigidity 

EJ) was studied for the first time by Beck[2]. He considers an elastic cantilever subjected to the load P at the end tip.  The system 

described in Figure 2 differs from the aforementioned  rod for a light  concentrated mass m  at the free end. The load cell that measures A

the load applied to the system, the ball bearing that provide the frictional force and the ball rollers that transmit the load to cantilever 

constitute the tip mass.

The equation of elastica that governs the problem can be written as

with the following boundary condition

Rewriting the problem, adopting a separation of variables for the y(x,t)=f(x)g(t), the function f(x) is expressed by the general solution

so that the roots of the characteristic equation result

with

Inserting the boundary conditions  in the function f(x) and imposing zero the determinant of the homogeneous system we find the 

characteristic equation that relates the natural frequency w of the system with the adimensional applied force p

Figure 10: Testing machine used in the experiments.
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Figure10: Ziegler’s column realized for the experiments.

Figure 11: Beck’s column realized for the experiments.

Figure 6: Displacement of the free end with a 

compressive load of 29 N and v =0.3 m/s.n
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The lower load for which the system becomes instabile and shows flutter is 
2calculated imposing that the derivative of g(p, w ) respect of the natural 

frequency w is zero, so that the critical load is written as

Notice that for the Beck’s column the divergence instability does not occur like 

in Ziegler’column.
The numerical analisys of the problem (Figure 6) has been performed with the 

software ABAQUS, considering a polycarbonate beam of length l=0.3 m with 
3density r=1240 kg/m , Young’s modulus E=2250 MPa and Poisson ratio 

v=0.37. The point mass at the free end weigh 47 g, the cantilever is loaded with a 

compressive follower force of 37.6 N and the velocity of the plane is 0.3 m/s. The Martins condition for the definition of the friction factor 

m  is implemented in the input file via subroutine UAMP written in Fortran.d

FLUTTER IN TRACTION

The system described in Figure 3 is composed by two rigid rods (with mass per unit length r  and  r ) internally connected through a 1 2

slider, while the entire system is constrained by an external hinge. The elasticity of the system is provided by the linear and rotational 

springs of stiffness k  and k . The defomed shape of the structure is fully determined by the two Lagrangian parameters q and h. The 1 2

follower load is induced to the column with a wheel sliding with Coulomb friction in the plane that moves with velocity v .n

The two nonlinear differential equations of motion for the system, assuming that the spring are viscoelastic of the Voigt type with 

constants b , b , k  and k , is found with the virtual work principle1 2 1 2

 

As in the Ziegler’s column, the approximation employed by Oden and Martins is used to simplify the frictional problem.

If we consider the absence of viscosity (b =b =0) the solutions of the linearized system can be written in the matrix form1 2

where A  are the (complex) amplitudes, W is the circular frequency and the other parameters arej

Non-trivial solution to the system is possible if the determinant of the matrix becomes zero. In that case three possibilities arise:
2Ÿ two real positive values for w , a situation that corresponds to stability of the system (g<g ). It is shown in Figure 7;f

2Ÿ two complex conjugate values for w , a situation where the oscillation of the system becomes steady at large deformation (g<g<g ). f d

This instability is called flutter. It is shown in Figure 8;
2Ÿ two real and negative values for w , a situation corresponding to vibrations that grow exponentially with time (g>g ). This d

instability is called divergence.

The critical load for flutter and divergence instability is written in the adimensional form

{

LOAD FRAME

The testing machine that performs the experiments is realized with a conveyor belt (Figure 9), on which are arranged the elastic 

structures object of study. The control pannel allows adjustment of the velocity of the plane and inversion of the motion direction. This 

permits to perform experiments with compressive load and also tensile load. The weight is applied to the system with the aid of a loading 

floor, free to slide in four linear bushing. The structures previously exposed (Figure 10, 11, 12) are mounted on a frame directly fixed to 

the conveyor belt. 

Figure 8: Parameter h with a tensile load P=12 N and 

v =0.3 m/s. The system shows flutter instability.n
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Figure 7: Parameter h with a tensile load P=5 N and 

v =0.3 m/s. The system results stable.n
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Figure 12: Rigid bar constrained with slider and hinge for 

the experiments.
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